Simple calculations regarding contribution of pathways

Suppose we have four pathways, each contributing p_1 , p_2 , p_3 and p_4 percent to the dose (or risk)

 p_1 = 100*dose₁/dose p_2 = 100*dose₂/dose p_3 , p_4 , etc

Now suppose one of the pathway doses, say dose₁, is underestimated (overestimated) by some amount u₁. Then a new overall dose, and percent contributions can be calculated.

```
dose' = dose + u_1

p_1' = 100*(dose_1+u_1)/(dose+u_1)

p_2' = 100*dose_2/(dose+u_1)

etc.
```

By examination, we see the obvious $-p_1$ is greater than p_1 , and the other p's are decreased proportionately.

Since the RSAL is inversely proportional to dose (or risk), the net effect of an increase in a pathway contribution is a decrease in the RSAL proportioned inversely to the overall dose (or risk) increase.

EXAMPLE: Assume p_1 is 52%, p_2 , p_3 and p_4 are each 16%, corresponding for simplicity to doses of 52 and 16 units respectively. Suppose now that dose₁ has been underestimated by 26 units, or 50%.

and

In this example, an underestimate of 50% in the major contributing pathway has resulted in approximately a 20% overestimate of the RSAL. An understanding of this relationship is very important to interpretation of uncertainties in the RSAL calculations.

